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TECHNICAL NOTE 4096

FLOW-TURNING LOSSES ASSOCIATED WITH ZERO-DRAG EXTERNAL-
COMPRESSION SUPERSONIC INLETS

By Rudolph C. Meyer

SUMMARY

An anslysis based on momentum and continuity considerastions is used
to evaluaste the total-pressure recovery of zero-wave-drag external-
campression supersonic air inlets for the Mach number range from 1.0 to
4.0.

The geometry of such inlets can cause a significant loss in inlet
total -pressure recovery which arlses in the process of turning the flow
back to the axial directlion after supersonic compression. This loss mgy
become as large as 20 percent of the computed inlet recovery at Mach 4.0.

Some consideration is given to wind tunnel blockage calculations in
which the model drag enters as & parameter, and a criterion is developed
which supplements the usual Kentrowitz condlition.

INTRODUCTION

The design of a supersonic air inlet for a propulsion system usually
requires many compromises to obtaln satisfactory over-all performance.
One such compromise involves the interplay of inlet total-pressure recov-
ery and cowl pressure drag. Large cowl pressure drags are usually assocl-
ated with high-performsnce external-compression inlets (ref. 1, p. 627).
Drag reduction has been obtained primerily by decreasing the cowl projected
area, that is, by turning the inlet flow back to the axial direction more

rapidly.

The limiting form of such a philosophy is the zero-wave-drag inlet
in which the externsl cowling is alined with the free-stream velocity.

The recovery potentisl of this type of inlet is necessarily less than that
of a conventional inlet because of the limited supersonic compression per-
mitted by the requirement of internally attached shocks at the cowl 1lip.
Further total-pressure losses are also incurred by abruptly turning the
inlet flow back to the axial direction.
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An analysis based on momentum and conbinuity considerations whereby
these latter losses may be calculated is presented along with summary
curves applicable to zero-draeg inlets with a sharp centerbody shoulder.
The effect of rounding the centerbody shoulder is also consldered as
well as some aspects of permissible inlet contraction and the analogous
problem of wind tunnel blockage.

SYMBQLS
A area
I
D(M) MQ. P2 MZ) 2(r-1)
an(M)/an(M) (M) (1 + vMB)
-
-1
& (M) (1 + rMZ)(l P Tt Mz) = (1 + sz)(g)M
1 unit vector
M Mech number
Mi Mech number after Kantrowitz contraction from My
(M) (M) /a(M)
o} | unit outward normal vector
P totel pressure
P gtatic pressure
qQ dynemlc pressure, q = %- V2_= %-pMz
R totael-pressure recovery, R = PZ/PO
S bounding surface of integration
Vv velocity
v veloclty vector
4 force parameter, eq. (15)

@ flow angularity at inlet entrance statlon
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Y ratio of specific heats for air, 1.4
1 covwl-lip overhang angle, deg
e cone half-angle, deg
P mass density
. PRip P2 A
Podo Fodo
Bubscripts:
c cowl
1 basic inlet
R ramp or centerbody
8 shoulder
0 free strean
1 inlet entrance station
2 equivalent uniform flow
Oy evaluated at M '

Superscripts:
m average value

* corresponding to Kantrowitz contraction

ANATYSTS

The momentum equation for the steady flow of & compressible fluid for
a given control volume may be written in vector form as )

ﬁ(pf-ﬁ)7m+£pﬁu=o ()

1f boundary shearing stresqes are neglected. The notation ng indiceates

the integration 1s to be pe;formed over the entire surface S enclosing
the control volume, while 71 is & unit outward normal vector to the sur-
face S. The first integral in equation (1) represents the vector momentum
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leaving the control volume, while the second integral glves the resultant
force which the volume exerts on 1ts bounding surface S.

A control volume with & bounding surface S generated by the line
ABCDEFA can be constructed by referring to figure 1(a), which shows a
cross sectlon of a typical supersonic inlet operating at full capture
mass flow. The line segments FA and CD are taken as perpendiculer to the
free-stream flow vector Vy, while the segments ABC and ED generate the
centerbody and cowl contours, respectively. The duct at station CD is
agssumed to have 1ts walls parallel to VO, which corresponds to an Inlet
geometry in which the flow is returned to the exial directlion after super-

sonic compression.

. LSV

Defining the vector Q to be of unit magnitude and parallel to the
free-stream flow VO and taking the scalar product of Y and equation
(1) result in &

ﬁ(pv-a)v-€u+£pﬁ-iu=o (2) ,

This equation is a scalar equation written for the axial component of
momentum.,

The upstream internal thrust exerted on the-cowl is given by the
pressure integral (the second integral in eq. (2)) over the surface gen-
erated by line ED, while the downstream force on the centerbody is given
by the pressure integral over ABC. These two terms can be denoted by

-pEAC and pgAR, respectively, where p% and p% are the average ef-
fective pressures acting on Ac and AR, the internal cowl projected
area and the centerbody projected area, in that order.

With the previous notation, equation (2) may be written

— - A A
p‘lﬁ{‘AR+J‘ (pV-ﬁ)V'id.A.+J\ ph - 1 dA - PUAL - poVBAg - PohAg = ©
CD CD . (3)
where \}ED indicates an integration over the surface generated by line

CD. The evalusbtion of the two remaslning integrals in equation (3) would

require a detailed knowledge of the flow at the station CD. It is con- ]
venient then to consider the properties of the equivalent uniform flow ‘.
having the same mass flow and momentum as the nonuniform flow at station

CD. The term uniform here implies constant velocity and fluld properties

acrose the duct as well as parallel flow, which at station CD is taken il
to be in the axial direction. By denoting the equivalent uniform flow
with the subscript 2, equation (3) becomes

2 m
poVahy + Dohy - poVEA - Poho + PRAg - Peh = O
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or, for a perfect gas,

PoAsG(Mp) = PoAg3(M,) - PRAR + Dok ()

The continuity equation written between FA and CD in terms of the
D function is

P,A,D(Mp) = PoAD(M,) (5)

Dividing equation (5) by equation (4) ylelds
() D(My)
G(MO) - <EE &_AB. - E::i '..A_c_)

vhich determines N(My) if pR end pg are known. To each value of the

function N +there are iwo corresponding Mach numbers, one supersonic and
one subsonic. By taking the latter as pertinent to critical inlet opera-
tion since it evaluates the flow downstream of the terminal shocks, equa-
tion (6) then determines M5, and, consequently, the effective recovery

PZ/PO may be calculsted from equation (5) as

7z _ %o 2to) (1)
Py A D(Mp)

The functions G, D, and N are tabulgted in reference 2.

(6)

Equations (6) and (7) cannot be eveluated unless the average pres-
sures pg and pg are known. In general, because of the uncertainty

in the location of the terminal shock, 1t is impossible to predict the
internal cowl pressures with any assurance; however, for a zero-drag in-
let, which for the purposes of this report will mean that A.c = 0, only

a knowledge of the average pressure on the centerbody is necessary. In
the event the centerbody is a two-dimensional ramp surface or a single
cone with a sharp corner at the shoulder (as in fig. 1(b) in which BC is
paraliel to Vo), the average centerbody pressure may be readily calcu-
lated by existing methods. It is assumed that all flow disturbances
from the cowl 1lip strike the centerbody downstream of the shoulder B, a
usual condition for the previously mentiloned irflet types which are not
overcontracted.

By referring to the zero-drag inlet geometry with a corner shoulder
as the basic inlet, the effects of geometry chenges, such as rounding
the centerbody shoulder, may be determined by differentiating equation (7)
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wlth respect to ¢, where ¢ i1s the bracketed term in the denominator
of equation (6). Thus, the equation

a(Pa/Po) _ a(Pa/Po) a[D(Mp)] a[N(Mp)]

W ape)] iG] T ©
glves
op Lol oW @

vwhere R denotes the total-pressure recovery PZ/PO’ and the subscript
i refers fto the basic inlet values of R, ¢, and M;. Thus, equetion
(9) evaluates the rate of increase of recovery with respect to ¢. From £
equation (6) with A, = 0, N(My) < N(Mp). Thus, by equation (9),

d(R/R;) /d(cp/cp}) < 0, vwhich means that in order to obtain an increase in

recovery d(9/¢;) must be negative, or, eguivalently, for a given Ag
the mean ramp pressure p% must decrease.

For most two-dimensional zero-dreg inlets the turning loss may be
calculated without considering the entire supersonic compression process.
If the flow at the entrance station EB of figure 1(b) is uniform, the
control volume enclosed by BCDEB may be considered 1in place of the for-
mer volume. In figure 1(c) the volume BCDEB is redrawn to larger scale
with Mi and o indicating the Mach number and flow inclination of the
entrance flow with respect to the duct BC-ED. The specific type of
supersonlc compression that the free-stream flow MO undergoes to arrive

at Mi and o 1is immaterial.

The 1ip overhang angle 1 1is a measure of the contraction ratilo

By /Ay
A - .
a1 = cosga ﬂ! (10)
Ao cos 1
By use of equation (2) the momentum equatlon may be written as
_ ) cos a cos(a - 7)
PoG(Mp) = PG(My) - ZPl(ﬁ)Ml [1 - o5 7 ] (11)
. »

while the continulty equation is

Pp0%,) = By00g) 7L = ByoGy) So2lEn) (12)

cos 1
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Dividing equation (12) by equation (11) ylelds

) - D(Mi) cos(a - 1) (13)
cor v [etm) - o(f), [ - = me=]

Agalin for given Mi,_m, and 71, teking the subsonic root corresponding
to N(M;) determines M, and thus D(Mz) and gives for the recovery

P2 _ cos(a - 1) D0M) (12)

For n = a/Z no internal contraction occurs as can be seen from
equation (10}. Equatione (13) and (14) then read

D(M;)

a(M) - 2(%)Ml (1L - cos a) (13e)

N(M,) =

and

P D(M )
:—Pf = E(M—zy (142)

The case 17 = O, where the lip is directly over the corner shoulder B,
also corresponds to the geometry of an unswept normal-shock inlet flying
at M, and an angle of attack «. Equations (13) and (14) may also be
teaken as the equations for swept normel-shock inlets and are equivalent
to those of reference 3 which considers such lnlets.

RESULTS AND DISCUSSION
Significance of Effective Total Pressure

It is necessary at this point to consider the significance of the
effective totel-pressure recovery PZ/PO introduced in the previous

section, ANALYSIS. Mathematically, PZ/PO was defined as the total-
pressure recovery of a uniform stream having the same msss flow and total
momentum at the inlet constant-ares throat section as the actual nonuni-
form inlet flow. If the inlet were operating at its critical point and
the constant-asrea throat section were infinitely long, the flow in ‘this
duct would eventually become a uniform subsonic stream if wall friction
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is neglected. The recovery of this stream would then correspond to the
effective recovery computed herein and would take into account total-
pressure losses due to mixing at constant erea. The physical mechanism
giving rise to what has been designated as a turning loss 1s thus a
combination of internel shock and mixing losses.

Practical zero-drag inlet configurations will not provide sufficlent
constant-ares throat length for complete mixing to occur. However, in
general, the throat length should be sufficient to contain the terminal-
shock system when the Inlet is operating critically. If each filament
of the subsonic flow leaving the throat is then assumed to diffuse isen-
tropically, reference 4 indicates that the effective recovery after this
diffusion process will be less than the initlial effectlive recovery. Thus,
the recoverles presented herein are an upper limlt to the effective re-
covery that an engine at the terminus of an ideal subsonic diffuser would
experience.

It 1s desirable to establish that the effective recoveries of this
report are an upper limit to the average total pressure of the flow at
the exlt of the subsonic dlffuser independent of the subsonic diffuser
configuration or performence. Reference 4 indicates that, for moderate
distortion and effective duct Mach numbers up to 0.7, the mass flow
welghted and effective recoveries are almost identical. As the mass flow
weighted recovery of the flow leaving the inlet throat cannot increase,
1t follows that, under fairly general circumstences, the effective re-
covery at the throat is an upper limit to the inlet recovery for all
subsonic diffusers.

Turning-Lose Considerations in Diffuser Design and Evaluation

The results of calculations made for single-cone zero-drag inlets
with shock on 1lip and no internal contraction using equations (6) and
(7) are presented in flgure 2 by the solid lines which glve effective re-
covery PZ/PO plotted against cone half-angle 8 for various free-
stream Mach numbers. For these inlets the threoat area was set equal to
the area projected normal to the average flow direction in the conical
flow field at the entrance station. All curves are termlnated at the 1lip
detachment value; that is, for larger 6 the conical shock is incapable
of regular reflection at the cowl 1lip.

The dashed curves were taken from reference 5 and are included for
comparison to illustrate the variation of inlet total-pressure recovery
if it is assumed that the flow proceeds isentropically from the entrance
station EB of figure 1(b) to station CD and there undergoes & normel
shock. The lower recovery values given by equations (6) and (7) must
then be attributed to the nonisentropic nature of the process involved
in attaining a uniform axial flow after supersonic compression, in
essence,a bturning loss.

VLY
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As may be seen from figure 2, the effect of turning losses favors
smaller cone angles for zero-drag single-cone inlets than would other-
wise be indlcated. For example, at a Mach number of 4.0 the optimum
cone half-angle is reduced to 25° as compared with 320 .if turning losses
are neglected.

As explained in the section entitled ANALYSIS, associating M; and

o wilth the final ramp Mach number and angle permits & ready evaluation
of the total-pressure recovery through the combined turning and terminal-
shock process of a two-dimensional inlet.

Figures 3(a) and (b) are comstructed from equations (13) and (14)
for 7 = a/z and 1 = %, respectively, and indicate the extent to which
increased turning influences recovery. At « = O +the value of Pz/?l
is simply the normsl-shock recovery for Ml or Mi. All curves of figure
3(b) are terminated at the left for those vaelues of o for which the lip
reflected shock lies forward of the corner shoulder B. The over-all in-
let recovery would be the product of the recovery PZ/Pl glven by equa-
tions (13) and (14) and Pl/PO, which is the recovery through the super-

sonlc compression process up to the entrance station.

The curves of figure 4 illustrate the variation 1n pressure recovery
with Mach number for isentropic ramp and single-wedge zero-drag inlets.
These inlets incorporated no internsl contraction and were designed for
maximum recovery consistent with full mess-flow capture. The calculations
for the so0lid curves include turning lossesg, while for the dashed curves
these losses were neglected. The decrement in pressure recovery for the
isentropic inlet at Mach 4.0 is 17 percent. A similar calculation for a
maximum contractlon isentropic inlet gives a 19-percent decrease.

The performance of single-cone zero-drag inlets was readlly evaluated
for the corner-shoulder configuration as the average static pressure act-
ing on the fore part of the centerbody was known. For a multicone or
isentropic spike inlet, the average entrance station Mach number and the
flow angle are usually known more accustely than the centerbody surface
pressure. If this is true, equations (13) and (14), or, when appropriate,
figures 3(a) or (b), may be employed to evaluate the effective recovery
of such inlets using the average Mach number and flow angle to replace

and a. The accuracy of such a procedure was checked for the case
of single-cone inlets where, for example, at Mg = 3.0 and 6 = 26° the

exact turning loss from figure 2 is 0.054 Fp, while using the mean values

of Mach number and flow angle in the conical field and equetions (13) and
(14) yields a loss of 0.052 Py.

A1l consideration of turning losses has been previously confined to
corner-shoulder configuratione. The recovery will increase if the
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centerbody shoulder is rounded off. This is indicated by the discussion
related to equation (9) where it was shown that pﬁ, the average pressure

acting over the forward projected area of the ramp or centerbody, must
decrease 1f the recovery ies to increase. The extent to which the shoulder
may be rounded, however, is limited by lnternal contraction considera-
tions, as the rounding will increase the entrance area. Also; for ex-
tensive rounding, the reflected shock from the cowl may strike the center-
body before the shoulder turn is completed, a circumstance which would

tend to 1ncrease p%.

An indication of the improvement in inlet performance that might be
expected because of rounding is glven by the following exsmples. A Mach
4.0, isentroplc ramp inlet with the corner shoulder rounded off to a
circular arc as illustrated in figure 1(d) atd with Ag/Az = 0.1 has e

calculated increase in total-pressure recovery of (.01 Pq campered with

the corner-shoulder configuration. This is equivelent to reducing the
turning loss from the original 0.0%2 PO of figure 4 to 0.08 PO. The

same modification at Mgy = 3.0 also resulted in only a 0.01 PO in-

crease in recovery. In both examples the pressures on the shoulder were
computed by Prandtl-Meyer theory.

The practical use of the momentum-continuity method for calculating
inlet recovery is not limited to the case of a uniform flow at the en-
trance station or to shock-on-lip zero-drag inlets. For an inlet operat-
ing at above design speed the compression shock or shocks may fall down-
gtream of the cowl lip. For zero-drag two-dimensional inlets the ramp
pressures may still be calculated, and, thus, equations (6) and (7) may
be used to celculate the recovery. For either the two-dimensional or
axisymmetric inlet the pressure recovery will be independent of center-
body translation as long as the inlet neither spills flow nor
overcontracts.

Blockage Considerations

The function N eppesring in equation (6) assumes a meximum value
of 0.4564 st Mach 1.0 for v = 1.4 and decreases monotomically in wvalue
on either side of Mach 1.0. Quantitatively, the condition that the func-
tion N yield a meaningful result may be formulated by writing equation
(6), with A, =0, as

pZ D(M;) P\ -
_E.(I;‘ 2(3)' < G(Mo) = m (_E)MO = 4z (15)

A plot of the right side of equation (15), designated Z, for v = 1.4
is given in Tigure 5.

PLSY
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A particular inlet geometry may be such that equation (6) yields
values of N greater than N(M = 1.0)}. If this should happen, the inter-
pretation is that no equivalent flow Mé exists which would satisfy the

inlet geometry; that is, the assumed flow structure is untensble and, as
a result, the inlet will not operate at full capture mass fiow.

In order for an inlet of the type in figure 1(b) to operate at Ffull
m

capture mass flow, the centerbody force paremeter S A nust be less

0
than the critical value Z. For a given p%/bo this requirement then

places a lower limit on the over-all contraction ratio for the inlet
AZ/AO =1 - (AR/AO)' The use of variable-geometry techniques would be

unsuccessful in clrcumventing this limitation on over-all contraction
since the critical force parasmeter may not be exceeded at any time sub-
sequent to starting the inlet.

If the inlet centerbody is considered as a wind tunnel model and
the straight inlet cowling as wind tunnel walls, the condition specified
by equation (15) and figure 5 determines whether the tunnel may start.
This wind tunnel starting criterion supplements the usual Kentrowitz con-
dition in that both criteria must be satisfied.

Usually those configurations satisfying the Kentrowitz requirements
will also satisfy the momentum consideratlons of equation (15). There sare
exceptions to this rule, however. For example, & normel-shock inlet oper-
ating at zero mass flow was calculsted to block a wind tunnel if sized
according to Kentrowitz for all Mach numbers up to 4.0, the range of
calculations made. For this case the pressure p% is the pitot pressure,
and equation (15) requires approximately a 20-percent reductiorn in model
size to permit starting.

Whenever the starting crliterion presented herein is more stringent
than the Kentrowitz requirement, that 1s, requires a smaller model size,
1t means in essence that the wind tunnel model, if sized according to
Kantrowitz, introduces greater total-pressure losses in the tunnel flow
than a normael shock spanning the entire test section. For instance, in
the case of the zero-flow normsl-shock inlet described previously, the
loss in total pressure suffered by the tunnel flow because of the de-
tached bow shock, the shocks following the reexpansion around the inlet
1ip, and whatever mixing occurs exceed those of a normal shock at the
tunnel Mach number.

CONCLUDING REMARKS

For zero-drag externsl-compression inlets a loss in total pressure
is inherent in turning the flow back to the axial direction after
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supersonic compression. An analysis based on momentum and continuity
considerations, applicable to most zero-drag inlets, indicates that these
losses mey at times become as high as 20 percent of the 1lnlet recovery
at Mach 4.0. TFor zero-drag single-cone lnlets, the effect of including
turning losses decreases the cone angle requlred for optlmum pressure
recovery.

The momentum-continuity analysis applied to the evaluation of inlet
turning losses ylelds a wlnd tunnel starting criterion which supplements
the usual Kantrowitz condition and is particulerly appropriate for the
testing of high-drag models.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 12, 1957
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Total-pressure recovery, Po/Py
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